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Research Topics

• Alkyne metathesis: Catalysts development (latest: molybdenum-nitrides 
and molybdenum-alkylidynes endowed with silanolate ligands) and 
application in total synthesis.

• Alkene metathesis: synthetic methods

• n-acid catalysis: Catalysis based on the activation of p-systems with the aid 
of carbophilic Lewis acids such as Pt(2+) and Au(1+).

• Iron catalysis: Iron catalysts for cross coupling, cycloisomerization
reactions, cycloadditions of unactivated substrates, and carbometalations
of π-bonds

• New concepts for catalysis

• Total synthesis

4



Natural Products derived from P.lima

• Dinoflagellates: single-celled 
eucaryotes, usually called algae

• Very large genome -> additional 
secondary metabolites could be 
available

• Ocadaic Acid: highly potent and 
specific inhibitor of the Ser/Thr-
protein phosphatases PP1 and PP2A

• Limaol: moderate cytotoxicity, quite 
stable structure
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Structure of Limaol

• 40-carbon backbone

• Five exo-methylene groups, 4 
clustered in a skipped array

• Spirotricyclic core

• Homoallylic alcohol at C27 
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Retrosynthetic Approach 
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Synthesis of Fragment I (A)
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Synthesis of Fragment I (B)
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Synthesis of Fragment I (C)
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Synthesis of Fragment II (A)
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Synthesis of Fragment II (B)
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Synthesis of Fragment III (A)

• Curtin-Hammet principle: the product distribution reflects 
the difference in energy between the two rate-limiting 
transition states. 13



Synthesis of Fragment III (B)
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Assembly of the three fragments (A)
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Assembly of the three fragments (B)
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Epi-limaol!!



Chemistry is pain

• This reaction does not follow the Cram-Chelate model

• The result is confirmed by reaction with less complicated substrate 
of the same type

• Varying the Lewis acid led to product mixtures in low yields
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Cram-chelate model
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Left: Image taken from Lecture Notes of ‘Stéréochimie Organique’ by Prof. 
C.Bochet – Unifr – AS2018 

For further informations about Cram-Chelate model, see:
J.Org.Chem 1986, 51, 5478-5480

JACS 1986, 108, 3847-3849



Attempted 
Reagent- or 

Catalyst-
Controlled 
Allylation 

Reactions of 
the Central 
Fragment
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But… less is more: Mitsunobu reaction –
Synthesis of limaol (A)
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Synthesis of Limaol (B)
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Synthesis of Limaol (C)

• Nearly 50 total synthetic steps

• Access to limaol and epi-limaol
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Conclusion

• Successful synthesis of target molecule

• Successful application of the Au(+) complex for the construction of 
the spirotricyclic core

• Problem of the epimerization of C27 solved
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Thanks for your attention. I 
am now glad to answer 

your questions. 



Reaction mechanisms
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https://www.organic-
chemistry.org/namedreactions/stille-
coupling.shtm
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